Escherichia coli Virulence Genes Profile of Aquatic Environments with Different Characteristics

N. Masters¹, W. Ahmed^{1,2}, S. Toze², M. Katouli¹

¹Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, DC Queensland Biosciences Precinct, 306 Carmody Road, Brisbane, Queensland 4067, Australia

Results

Summary

We investigated the number and presence of 58 virulence genes (VGs) of pathogenic *E. coli* strains in 3 estuarine , 4 brackish and 13 freshwater sites in SE Qld during dry (n=20) and storm events (n=20). The numbers of *E. coli* varied during the dry season (2cfu/100mL to >5000cfu/100mL) and high rainfall events (28cfu/100mL and >5000cfu/100mL). Eighteen (90%) samples collected during the dry period were positive for multiple VGs ranging from 4 to 22 genes per sample. During episodes of high rainfall events all sites were positive for multiple VGs ranging from 7 to 30 VGs per sample. Six of the VGs (*iutA*, *cdtB*, *focG*, *kpsMT*K5, *eaeA* and *paa*) were over 50% more prevalent during the storm events. We also found that higher *E. coli* numbers didn't necessarily potentiate a higher presence of VGs.

Introduction

E. coli strains are commonly used as indicator bacteria for measuring the level of faecal pollution in water bodies. Whilst most *E. coli* strains are non-pathogenic commensals, certain strains may carry a combination of virulence genes (VGs) which enable them to cause intestinal or extraintestinal infections. However, the possession of a single or multiple VGs does not necessarily indicate a strain is pathogenic unless that strain has the appropriate combination of VGs to cause disease in a specific host¹. Faeces from domestic and wild animals, and humans potentially contain high numbers of *E. coli* strains harbouring one or more VGs². Runoff from agricultural lands and sewer overflows may also contribute pathogenic *E. coli* strains containing these VGs in environmental waters. Whilst some studies have investigated the presence of *E. coli* strains carrying VGs in environmental waters^{3,4,5,6,7} they have not investigated VGs to the extent reported in this study and not in waters of various characteristics.

The numbers of *E. coli* in the estuarine, brackish and fresh waters differed between sites and during the dry and storm events with the highest numbers found in fresh water during the storm water episodes (Figure 1 & 2).

Figure 1. Number of *E. coli* (cfu/100mL) at sampling sites during the dry season, and the number of VGs present divided by the number of virulence genes tested (virulence score).

10000

Materials and Methods

Samples were collected and processed within 6 hrs, 1lt of sample was filtered and incubated on Chromocult[®] agar. Samples were enriched in tryptic soy broth (TSB). 2 ml of broth culture was used for DNA extraction (DNeasy blood and tissue kits, QIAGEN).

Sampling sites: 20 sites with different characteristics were chosen for this study (see below).

Sampling sites	Location	Land use	Beenaam
Estuarine water			Como
EW1	Caloundra	Urban	Cootharaba
EW2	Currimundi	Urban	Boreen Teewah
EW3	Mooloolaba	Urban	Cootharaba
			eston Ringtail Noosa State Forest Node Share
Brackish water			Pomona
BW1	Coolum	Urban	Yurol State Noosa Forest Munna Point Heads
BW2	Bli Bli	Peri-urban	Federal Noosaville Sunshine
BW3	Nambour/Bli Bli	Peri-urban	Mountain Cooroy Beach
BW4	Boreen Point	Urban	Ridgewood National Park Marcus
			West Cooroy Beach
Freshwater			State Forest
FW1	Alexandra Beach	Urban	Arkwright
FW2	Eumundi	Pasture	lla Yandina Yaroomba
FW3	Noosa	Urban	
FW4	Sunshine Beach	Urban	an Mapleton Nambour
FW5	Mooloolah	Pasture	Maroochuda
FW6	Eudlo	Peri-urban	Runda Park Waroochydo
FW7	Nambour	Urban	Palmwoods
FW8	Yandina	Peri-urban	Witta Doloolah'River Warana National Park
FW9	Yandina	Pasture	Wurtulla
FW10	North Arm (east)	Pasture	Wootha Montha
FW11	North Arm (west)	Pasture	Landsborough Caloundra
FW12	N. Arm/Eumundi	Pasture	Booroobin Pelican Diamond
FW13	Kin Kin	Peri-urban	Cedarton Beerwah Waters Head

Figure 2. Number of *E. coli* (cfu/100mL) at sampling sites during the high rainfall events, and the number of VGs present divided by the number of virulence genes tested (virulence score).

18 (90%) samples were positive for between 4 to 22 genes per water sample during the dry season, all samples collected during high rainfall events were positive for multiple VGs ranging from 7 to 30 genes per water sample. Nineteen out of 58 tested VGs were never found in any water samples. The most commonly detected genes (>40%) are highlighted in table 3 and the prevalence of *E. coli* associated toxin genes is illustrated in table 4.

able 3.	The most commonly	detected virulence	genes (VG	B) during the dry	y season or high rainfa	Ill events (>40%)
---------	-------------------	--------------------	-----------	-------------------	-------------------------	-------------------

	Dry Season	Wet Season	[Dry Season	Wet Season		Dry Season	Wet Season
VG	(%)	(%)	VG	(%)	(%)	VG	(%)	(%)
PAI	55	60	fimH	85	100	ibeA	60	90
fyuA	65	90	sfa/focDE	20	45	iutA	35	90
<i>kps</i> MTII	50	10	cdtB	0	90	focG	10	95
traT	80	55	<i>kps</i> MTk5	35	80	iroN _{E.coli}	45	10
ompT	70	30	iss	50	90	ireA	5	45
eaeA	10	100	F41	5	55	chuA	85	95
yjaA	55	85	TSPE4.C2	85	90			

58 virulence genes associated with intestinal and extra-intestinal *E. coli*: are outlined below, protocol for VG screening as previously described in Chapman et al⁸.

E coli	Associated virulence genes						
L. COII	Adhesins Toxins		Capsule Siderophores		Invasins	Additional virulence	
pathotypes	Synthesis			genes			
ExPEC	PapAH	hlyA	<i>kpsMT</i> III	fyuA	ibeA	PAI	
	fimH	cvaC	kpsMT K1	iutA		traT	
	papEF	cdtB	rfc	iroNE.coli		ompT	
	bmaE	CNF1	kpsMT II			iss	
	sfa/focDE	Univcnf	kpsMT K5			yjaA	
	papG allele I	cdt	ireA			TSPE4C2	
	nfaE						
	papC						
	focG						
	papG allele II						
	papG allele III						
	Afa/draBC						
	sfaS						
	papG allele I'						
DAEC	aah		aidA AIDA				
	aidA AIDA-I (orfB)						
	$(orf B^{C})$						
EHEC	lha	exhA				chuA	
	eaeA	stx2					
	saa	stx1					
ETEC	fasA	LT					
	faeG	STa					
	fanC	STb					
	fedA						
	F41						
EPEC	Paa						

Table 4. The number (%) of sites positive for toxin genes associated with various virulent *E. coli* pathotypes.

Toxin VG	Dry Season (%)	Wet Season (%)	Toxin VG	Dry Season (%)	Wet Season (%)	Toxin VG	Dry Season (%)	Wet Season (%)
hlyA	0	0	cvaC	35	20	cdtB	0	90
cnf1	0	0	univCNF	0	35	ehxA	0	45
stx ₂	25	60	stx ₁	25	5	eltA	0	10
estll	0	0	estl	5	15	east1	70	95
cdt	40	60						

Conclusion

• Numbers of *E. coli* in 7 and 13 samples collected during the dry and wet season respectively exceeded the Australian and New Zealand Environment and Conservation Council (ANZECC) recreational water quality guidelines for fresh and marine waters.

• 18 sites during dry period and all sites during the rainy episodes were positive for multiple *E. coli* VGs some of which were significantly more prevalent in the wet season samples indicating a potential association with the storm water run-off.

• The virulence scores established for each water sample, indicated that higher *E. coli* numbers didn't necessarily potentiate a higher presence of virulence genes and that a water sample with low *E. coli* number could contain strains with high and potential VGs.

References

- 1. Gilmore M.S. et al. 2003. The thin line between gut commensal and pathogen. Science. 299:1999-2002.
- 2. Ishii S. et al. 2007. Relationship between phylogenetic groups genotypic clusters and virulence genes profiles of Escherichia coli strains from diverse human and animal sources. Appl. Environ. Microbiol. 73:5703-5710.
- 3. Ahmed W. et al. 2007. Detection of virulence genes in Escherichia coli of an existing metabolic fingerprint database to predict the sources of pathogenic *E. coli* in surface waters. Water Res. 41:3785-3791.
- 4. Chern E.C. et al. 2004. Occurrence of genes associated with enterotoxigenic and enterohemorrhagic Escherichia coli in agricultural waste lagoons. Appl. Environ. Microbial. 70:356-362.
- 5. Hamilton M. et al. 2010. Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon bay, CA. Water Res. (in press).
- 6. Lauber C.L. et al. 2003. Prevalence of pathogenic Escherichia coli in recreational waters. J. Great Lakes Res. 29:301-306.

